Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: covidwho-1716085

ABSTRACT

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Subject(s)
DNA Methylation/physiology , Methyltransferases/metabolism , DNA, Single-Stranded/metabolism , Deoxyadenosines/metabolism , Humans , RNA/chemistry , RNA/metabolism
2.
Proteins ; 90(1): 176-185, 2022 01.
Article in English | MEDLINE | ID: covidwho-1347427

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel, highly infectious RNA virus that belongs to the coronavirus family. Replication of the viral genome is a fundamental step in the virus life cycle and SARS-CoV-2 non-structural protein 9 (Nsp9) is shown to be essential for virus replication through its ability to bind RNA in the closely related SARS-CoV-1 strain. Two recent studies revealing the three-dimensional structure of Nsp9 from SARS-CoV-2 have demonstrated a high degree of similarity between Nsp9 proteins within the coronavirus family. However, the binding affinity to RNA is very low which, until now, has prevented the determination of the structural details of this interaction. In this study, we have utilized nuclear magnetic resonance spectroscopy (NMR) in combination with surface biolayer interferometry (BLI) to reveal a distinct binding interface for both ssDNA and RNA that is different to the one proposed in the recently solved SARS-CoV-2 replication and transcription complex (RTC) structure. Based on these data, we have proposed a structural model of a Nsp9-RNA complex, shedding light on the molecular details of these important interactions.


Subject(s)
DNA, Single-Stranded/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Binding Sites , Interferometry , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Protein Multimerization , RNA , Solutions
3.
J Med Virol ; 92(10): 2221-2226, 2020 10.
Article in English | MEDLINE | ID: covidwho-505569

ABSTRACT

In this study, we designed a set of SARS-CoV-2 enrichment probes to increase the capacity for sequence-based virus detection and obtain the comprehensive genome sequence at the same time. This universal SARS-CoV-2 enrichment probe set contains 502 120 nt single-stranded DNA biotin-labeled probes designed based on all available SARS-CoV-2 viral sequences and it can be used to enrich for SARS-CoV-2 sequences without prior knowledge of type or subtype. Following the CDC health and safety guidelines, marked enrichment was demonstrated in a virus strain sample from cell culture, three nasopharyngeal swab samples (cycle threshold [Ct ] values: 32.36, 36.72, and 38.44) from patients diagnosed with COVID-19 (positive control) and four throat swab samples from patients without COVID-19 (negative controls), respectively. Moreover, based on these high-quality sequences, we discuss the heterozygosity and viral expression during coronavirus replication and its phylogenetic relationship with other selected high-quality samples from the Genome Variation Map. Therefore, this universal SARS-CoV-2 enrichment probe system can capture and enrich SARS-CoV-2 viral sequences selectively and effectively in different samples, especially clinical swab samples with a relatively low concentration of viral particles.


Subject(s)
COVID-19/diagnosis , DNA Probes/metabolism , DNA, Single-Stranded/genetics , Genome, Viral , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , Biotin/chemistry , COVID-19/pathology , COVID-19/virology , DNA Probes/chemical synthesis , DNA, Single-Stranded/metabolism , Genotype , Humans , Mutation , Nasopharynx/virology , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
4.
Sci Rep ; 10(1): 4481, 2020 03 11.
Article in English | MEDLINE | ID: covidwho-7753

ABSTRACT

Severe acute respiratory syndrome coronavirus nonstructural protein 13 (SCV nsP13), a superfamily 1 helicase, plays a central role in viral RNA replication through the unwinding of duplex RNA and DNA with a 5' single-stranded tail in a 5' to 3' direction. Despite its putative role in viral RNA replication, nsP13 readily unwinds duplex DNA by cooperative translocation. Herein, nsP13 exhibited different characteristics in duplex RNA unwinding than that in duplex DNA. nsP13 showed very poor processivity on duplex RNA compared with that on duplex DNA. More importantly, nsP13 inefficiently unwinds duplex RNA by increasing the 5'-ss tail length. As the concentration of nsP13 increased, the amount of unwound duplex DNA increased and that of unwound duplex RNA decreased. The accumulation of duplex RNA/nsP13 complexes increased as the concentration of nsP13 increased. An increased ATP concentration in the unwinding of duplex RNA relieved the decrease in duplex RNA unwinding. Thus, nsP13 has a strong affinity for duplex RNA as a substrate for the unwinding reaction, which requires increased ATPs to processively unwind duplex RNA. Our results suggest that duplex RNA is a preferred substrate for the helicase activity of nsP13 than duplex DNA at high ATP concentrations.


Subject(s)
Adenosine Triphosphate/metabolism , Methyltransferases/metabolism , RNA Helicases/metabolism , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Nonstructural Proteins/metabolism , DNA/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded/metabolism , DNA, Viral/metabolism , DNA-Binding Proteins/metabolism , Hydrolysis , Kinetics , Protein Binding , RNA-Binding Proteins/metabolism , Substrate Specificity , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL